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We study approximation of univariate functions defined over the reals. We assume
that the r th derivative of a function is bounded in a weighted Lp norm with a
weight �. Approximation algorithms use the values of a function and its derivatives
up to order r&1. The worst case error of an algorithm is defined in a weighted Lq

norm with a weight \. We study the worst case (information) complexity of the
weighted approximation problem, which is equal to the minimal number of func-
tion and derivative evaluations needed to obtain error =. We provide necessary and
sufficient conditions in terms of the weights � and \, as well as the parameters r,
p, and q for the weighted approximation problem to have finite complexity. We also
provide conditions which guarantee that the complexity of weighted approximation
is of the same order as the complexity of the classical approximation problem over
a finite interval. Such necessary and sufficient conditions are also provided for a
weighted integration problem since its complexity is equivalent to the complexity of
the weighted approximation problem for q=1. � 2000 Academic Press

1. INTRODUCTION

To motivate the setting of this paper we begin with a classical approxi-
mation problem, which is defined as the approximation of smooth univariate
functions over a bounded domain. The smoothness of functions means the
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existence of r th derivatives whose Lp norms are uniformly bounded. The
bounded domain can be given as an interval [&R, R] for some finite R.
We approximate the function by algorithms that use function and derivative
values at some sample points from the domain [&R, R]. The worst case error
is measured in the Lq norm, and the worst case (information) complexity
comp(=, R) is equal to the minimal number of function and derivative evalua-
tions needed to obtain error =. We stress that the parameters p and q are
not related. Let

#=r+1�q&1�p

be positive, and let s=# for p�q, and s=r for p>q. It is known, see, e.g.,
[5, 6], that

comp(=, R)=3 \\R#

= +
1�s

+
with the factors in the Theta notation2 independent of = and R. Hence the
complexity goes to infinity with R.

In this paper, we study approximation of smooth univariate functions
defined over the unbounded domain of reals, R=(&�, +�). To obtain
positive results we modify the classical approximation problem by intro-
ducing weight functions � and \. The function � is a weight of the Lp norm
that is used for bounding the r th derivatives. The function \ is a weight of
the Lq norm that defines the error of algorithms. We make a few natural
assumptions about the weights � and \: they are nonnegative, positive at
a neighborhood of zero, and even. We study the worst case complexity of
this weighted approximation problem, which is proportional to the minimal
number of function and derivative evaluations needed to guarantee error =.

We now motivate the weighted approximation problem for univariate
functions over the reals. Many practical problems are defined over the
reals. Usually it is possible to reduce the problem to a finite interval by a
change of variables. Unfortunately, this approach may cause singularities
in the transformed function, and it is not clear how to cope with these
singularities. We prefer to deal with the original problem over the infinite
domain and to see the role of weights and smoothness in determining the
complexity of the weighted approximation problem.

In this paper we only study univariate functions. Of course, the case of
multivariate functions is much more interesting. We treat this paper as a
first step towards the weighted approximation problem for multivariate
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2 Recall that g(=)=O(h(=)) means that there exist positive numbers C and =0 such that g(=)
�Ch(=) for = # [0, =0]. Then g(=)=3(h(=)) means that both g(=)=O(h(=)) and h(=)=O(g(=))
hold, and g(=)=0(h(=)) means that h(=)=O(g(=)).



functions. It is clear that our results for univariate functions can be directly
applied for spaces of multivariate functions that are tensor products of
spaces of univariate functions. Then, Smolyak's or weighted tensor product
algorithms can be used, since these algorithms are built on efficient algo-
rithms for the univariate case, see, e.g., [9, 10]. Hence, understanding of
the univariate case is crucial. The isotropic case for multivariate functions
is more difficult, since it cannot be decomposed into a number of univariate
cases. We started the study of the isotropic case for monotonic weights and
it will be reported in a future paper. The case of general weights seems
much more difficult for the multivariate case.

In this paper we address two questions. The first is to find under what
conditions on the weights we have finite complexity for the weighted
approximation problem. It is clear that the behavior of the weights at
infinity determines whether the complexity of weighted approximation is
finite. We obtain a necessary and sufficient condition on the weights for
weighted approximation to have finite complexity.

It is easy to see that the weighted approximation problem is not easier
than classical approximation, i.e., the complexity of weighted approxima-
tion is always bounded from below by a multiple of =&1�s. This leads us to
the second question of when the complexity of weighted approximation is
of the same order in =&1 as the complexity of the classical approximation
problem. We first consider monotonic weights and present an algorithm
that solves the weighted approximation problem with cost proportional
to =&1�s, the complexity of the classical approximation problem. We then
discuss necessary and sufficient conditions on the weights for these com-
plexities to be equivalent.

We, now explain our results for a simplified choice of weights. Define for
any function g: R+ � R+ the order of g at infinity as

og=sup[; # R : lim
t � �

g(t) t;=0], (1)

with og=&� if the corresponding set is empty. Observe that if g(t)=
3(tk) as t goes to infinity then og=&k, and for the function 1�g(t) we have
o1�g=k. On the other hand, for g(t)=exp(&t) we have og=� and
o1�g=&�. In general, og�&o1�g and there exist functions g for which
og {&o1�g .

We now make the simplifying assumption that o\=&o1�\ and o�=
&o1�� , both being finite numbers. Then the complexity of weighted
approximation is of the same order as the complexity of the classical
approximation problem if

o\+min[1&1�p, o1��]>#.
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The complexity of weighted approximation is infinite for small = if

o\+min[1&1�p, o1��]<#.

Finally, if o\+min[1&1�p, o1��]=# then anything can happen, i.e., the
complexity of weighted approximation may be of the same order or much
larger than the complexity of the classical approximation problem, or
can be infinity depending on the specific form of the weights. We provide
examples of all three possibilities and pose one conjecture at the end of the
paper.

For weights with infinite order, the complexity of weighted approxima-
tion can be also either finite or infinite. In particular, for �(t)=\(t)=
exp(&|t| ) we have infinite complexity, whereas for �(t)=\(t)=exp(&t2)
the complexity is finite.

Formally, this paper is devoted only to the weighted approximation
problem. However, as explained in Remark 2, the results for q=1 are
relevant for a weighted integration problem where, instead of approximating
functions, one is interested in approximating integrals S( f )=�R f (x) \(x) dx.
Classically, see, e.g., [2], such weighted integrals are approximated using
either a change of variables or Gaussian quadrature. As with weighted
approximation, the drawback of the change of variables may be the artificial
introduction of singularities. Gaussian quadratures are, in general, difficult to
derive and need not be optimal for functions with finite regularity as assumed
in this paper.

There are only a few optimality results dealing with weighted integration
problems for functions of a finite regularity r, as assumed in this paper.
Among them are [1, 4] where r=1, �#1 and \ is the density of a
Gaussian distribution. For the weighted approximation problem, optimal
algorithms and optimal information were considered in Appendix G of [7]
for r=1, p=q=�, and �#1. This paper provides optimal algorithms for
various regularities (r�1) and weights \ and �. These algorithms have
already been implemented and tested for some weight functions and some
values of r; see [3].

2. WEIGHTED APPROXIMATION

In this section we define a weighted approximation problem. To motivate
our definition we first consider a classical approximation problem over
bounded domains. For the interval BR=[&R, R], consider the following
class of functions

Wr
p(BR)=[ f : BR � R : f (r&1) is absolutely continuous and & f (r)&p<�].
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By & f &p we denote the norm in the space Lp(BR). Here, r is a positive
integer, and p can be any number from [1, �]. Recall that for p=�,
&g&L�

=sup essx # BR
| g(x)|. Consider the unit semi-ball F of functions from

the space Wr
p(BR):

F=[ f # Wr
p(BR) : & f (r)&p�1].

We approximate functions f from the class F. The error of an approxi-
mation is measured in the norm of the space Lq(BR), where q can be any
number from [1, �]. That is, given a positive error demand =, where =�1,
we wish to have an algorithm U with the error e(U) not exceeding =. The
error e(U) is defined by

e(U)= sup
f # F

& f&U( f )&q .

We assume that we can compute function values f (t) and�or derivative
values f ( j)(t) for t # BR , and that U( f ) is of the form

U( f )=,(N( f )) with N( f )=[ f ( j1)(x1), ..., f ( jn)(xn)]

for some mapping ,, points xi # BR that are not necessarily distinct, and
ji�r&1. The parameter n is the cardinality of information N, which we
will refer to by card(N).3

It is intuitively clear that the approximation problem depends, in parti-
cular, on the radius R and that it is harder for larger R. Indeed, let r(n, R)
denote the minimal error among all possible U which use information of
cardinality n. It is well known (see, e.g., [8]) that, modulo a multiplicative
factor c # [1, 2], we have

r(n, R)=c inf
card(N)=n

sup [& f &q : f # F, N( f )=0]. (2)

By a standard change of variables one can verify that

r(n, R)=R#r(n, 1) with #=r+1�q&1�p. (3)

Moreover, there are many results establishing the behavior of r(n, 1), see,
e.g., [5, 6]. It equals infinity when n�r&1 and, for n�r, it is proportional
to

r(n, 1)=3(n&s) with s={#
r

if p�q,
if p>q.

(4)
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by U is non-adaptive and of fixed cardinality. This is without any loss of generality since, as
it is well known (see, e.g., [8]), adaption and varying cardinality do not help.



Observe that s�0, and s=0 iff #=0. The latter holds iff r=1, p=1,
q=�. We need to guarantee that r(n, 1) tends to zero as n goes to infinity.
Therefore we assume throughout the paper that

#=r+1�q&1�p>0. (5)

It is also known that relatively simple algorithms are almost optimal.
Indeed, let Un*( f ) be a piecewise polynomial of degree r&1 interpolating
f at equally spaced points xi, n=(i&1)�(n&1), i=1, ..., n. Then for R=1

e(Un*)�A1(n&r+1)&s, \n�r. (6)

The constant A1 depends on r, p, q but, of course, is independent of n.
Moreover A1�1. This means that modulo a multiplicative factor, the
algorithm Un* has minimal error.

Remark 1. The interval [&R, R] is only chosen for simplicity. For the
approximation problem defined over functions f: [a, b] � R the same
results hold true. For instance (3) holds with R=(b&a)�2, and the error
of the corresponding algorithm Un* for the interval [a, b] satisfies

e(Un*)�A1 \b&a
2 +

#

(n&r+1)&s, \n�r. (7)

The algorithm Un* can be also used for functions f outside the semi-ball F.
Indeed, since Un* is a linear operator, Un*( f ) is well defined as long as
f (r) # Lp([&R, R]). Moreover, & f&Un*( f )&q�e(Un*) } & f (r)&p .

Let comp(=, R) denote the minimal number of function values needed to
construct U with error at most =. For R=1, we denote comp(=, 1) simply
by comp(=). The quantity comp(=, R) is called the information complexity,
for brevity the complexity,4 of the approximation problem. From (3) we
obtain

comp(=, R)=comp(=�R#).

From (4) and (5) we have s>0 and therefore

comp(=)=3(=&1�s). (8)

This means that for all finite R, the complexity is finite. However, for any
fixed =, comp(=, R) approaches infinity with R and, hence, the problem
cannot be solved for R=�.
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the minimal cost needed for computing an =-approximation. In many cases, information com-
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weights as shown in Subsection 4.1.



This discussion shows that the approximation problem over the whole
space R must be modified. Such a modification can be provided by a
weighted approximation problem, which is defined as follows. Let

�: R � R

be a nonnegative and (Lebesgue) measurable function. We call � a weight
function. The regularity of functions f is defined in a weighted sense. That
is, we consider

Fp=[ f : R � R : f (r&1) is absolutely continuous and & f (r)&p, �<1]

with

& f (r)&p, �={|R

| f (r)(t)| p � p(t) dt=
1�p

.

The weighted approximation problem over the class Fp is defined as an
approximation of f by U( f ) with the modified error

e(U)= sup
f # Fp

{|R

| f (x)&U( f )(x)|q \q(x) dx=
1�q

,

where \ is another (nonnegative measurable) weight function. Of course,
for q=� we have

e(U)= sup
f # Fp

sup ess
x # R

| f (x)&U( f )(x)| \(x).

For example, letting \(t)=�(t)=1, if |t|�R, and \(t)=�(t)=0 if
|t|>R, this weighted approximation problem reduces to the classical
approximation problem over the interval [&R, R].

The error of an algorithm U now depends on both weights \ and �, as
well as on the parameters p and q. To stress this dependence, instead of
e(U) we will sometimes write

e(U, \, �) or e(U, \, �, q, p).

We add in passing that e(U) is finite only if U is exact on polynomials
of degree r&1 since they belong to the kernel of Fp .

Let comp(=, \, �)=comp(=, \, �, p, q) denote the minimal number of
function and derivative values needed to solve the weighted approximation
problem with error at most =. As before, we call comp(=, \, �) the (infor-
mation) complexity of the weighted approximation problem.
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It is clear that we must impose some conditions on the weights \ and �
to guarantee that the complexity is finite. For example, assume that \ is
bounded and has a finite interval B as its support, and � is bounded from
below by a positive number over B. Then the complexity is finite since the
weighted approximation problem reduces to the approximation problem
over a finite interval. On the other hand, we shall see that the complexity
is infinite if the function h(t)=tr&1\(t) does not belong to Lq(R), regard-
less of the function �.

We will make a number of assumptions concerning the weights \ and �.
Most of these assumptions are needed only to simplify the analysis and�or
to exclude trivial cases for which the complexity is infinite.

Since the most interesting case is when the weights have unbounded
support, we assume that, at least, � is always positive. We also assume that
\ and � are even. This is also done for simplicity only since we do not want
to distinguish arguments that differ by a sign. To exclude trivial cases, we
assume that both weight functions are positive and continuous at zero. Our
last assumption is that for any finite R, we have

sup ess[\(t): t # [0, R]]<�, (9)

inf ess[�(t): t # [0, R]]>0. (10)

That is, we assume that \ is bounded from above by a finite number and
� is bounded from below by a positive number over finite intervals. Of
course, these assumptions are satisfied by monotonic weight functions.

In summary, we make the following assumptions on the weights:

Assumption 1. The weight \ is nonnegative, measurable, even, positive,
and continuous at zero, and satisfies (9) for all nonnegative R.

Assumption 2. The weight � is positive, measurable, even, continuous
at zero, and satisfies (10) for all nonnegative R.

For such weights \ and �, we study the following two problems:

Problem 1. When is the complexity of weighted approximation finite
for every nonzero =?

Problem 2. When is the complexity of weighted approximation of the
same order as comp(=)?

Since \ and � are positive and continuous at zero, they do not vanish
around zero. Therefore, the weighted approximation problem is not easier
than the approximation problem over [&R, R] for some positive R, i.e.,
comp(=, \, �)=0(comp(=)). Thus, the equivalence of complexities addressed
in question (2) holds iff comp(=, \, �)=O(comp(=)).
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We end this section with the following remark concerning weighted integra-
tion and its relation to weighted approximation.

Remark 2. To simplify the presentation, the paper deals only with
weighted approximation problems. We want to stress, however, that all
results of this paper are also valid for the following weighted integration
problem. Let p, \, and � be as before. For any function f from the class Fp ,
we want to approximate the weighted integral

Int\( f )=|
R

f (x) \(x) dx.

It is easy to show that this weighted integration problem is equivalent
to the weighted approximation problem with the same weights, the same
value of p, and with q=1. That is, if comp(=, Int\) denotes the minimal
number of function evaluations needed to approximate Int\ with the error
not exceeding =, then

comp(=, Intp)=3(comp(=, \, �, 1, p)).

Moreover, for any algorithm Uapp for the weighted approximation problem
with q=1,

Uint( f )=|
R

Uapp( f ) \(x) dx

is a quadrature with the error proportional to the error of Uapp. In
particular, Uint is almost optimal if Uapp is almost optimal. Thus, this paper
provides answers to the above 2 questions also for weighted integration.

3. FINITE COMPLEXITY

In this section we provide a necessary and sufficient condition for the
complexity of the weighted approximation problem to be finite. The condi-
tion is expressed in terms of the nonlinear functional L defined by

L(R)= sup
&:&p�1 \|

�

R
\q(x) \|

x

R

(x&t)r&1

(r&1)!
|:(t)|
�(t)

dt+
q

dx+
1�q

, \R # R+

(11)

Observe that the integral over [R, x] is well-defined since � is measurable
and bounded away from zero. Therefore L(R) is also well-defined, although
it may happen that L(R)=�. Note also that the supremum in (11) is
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attained by functions : whose support is contained in [R, U). Moreover,
L is nonincreasing. By a change of variables in both integrals, (11) can be
rewritten as

L(R)=R# sup
&:&p�1 \|

�

1
\q(Rx) \|

x

1

(x&t)r&1

(r&1)!
|:(t)|
�(Rt)

dt+
q

dx+
1�q

, (12)

where # is given by (5).
The nonlinear functional L controls the behavior of functions from the

semi-ball Fp over the interval [R, �) and (by symmetry) over (&�, &R].
Indeed, L(R) is the weighted norm of the error of the Taylor polynomial
which approximates the function using f (i)(R) for i=0, 1, ..., r&1. Since we
can sample the function f only finitely many times, it is clear that for large
R, the set A=(&�, &R] _ [R, �) does not contain sample points and
the behavior of the functions over A is controlled only by a priori informa-
tion given by the parameters r, p, q and the weights \ and �. It is therefore
natural to expect that the error of approximation can be arbitrarily small
only if L(R) goes to zero as R tends to infinity. The formal proof is given
below.

Theorem 1. The complexity comp(=, \, �) is finite for every =>0 iff

lim
R � �

L(R)=0. (13)

Proof. Suppose first that the complexity is finite for all positive =. Then
for any positive = there exists an algorithm Un using information Nn( f ) that
consists of function�derivative evaluations at points t1, n , ..., tn, n whose error
e(Un , \, �) is at most =. Here, n=n(=) is an integer. Let

R== max
1�i�n

|t i, n |.

For R�R= take an arbitrary function : with (��
R |:(t)| p dt)1�p�1. Let f=, :

be the function that vanishes on (&�, R] and satisfies

f=, :(x)=|
x

R

(x&t)r&1

(r&1)!
|:(t)|
�(t)

dt when x�R.

Since f=, : # Fp and Nn( f=, :)=0, we have due to (2)

\|R

\q(x) | f=, :(x)|q dx+
1�q

=\|
�

R
\q(x) \|

x

R

(x&t)r&1

(r&1)!
|:(t)|
�(t)

dt+
q

dx+
1�q

�e(Un , \, �).
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Since : is an arbitrary function, this implies that L(R)�e(Un , \, �)�= for
any R�R= . This yields (13).

Suppose now that (13) holds. Given =, let R=R(=) be a positive number
for which L(R)�=�31�q. Consider now the following algorithm U=( f ). We
first define this algorithm for |x|�R. For x�R, it equals the Taylor poly-
nomial at R, i.e., U=( f )=�r&1

i=0 f (i)(R)(x&R) i�i !. For x�&R, it is also
given by a Taylor polynomial, this time at &R. For x�R, we have

f (x)&U=(x)=|
x

R

(x&t)r&1

(r&1)!
:(t)
�(t)

dt with :(t)= f (r)(t) �(t).

Since (��
R |:(t)| p dt)1�p�&:&p�1, we conclude that

\|
�

R
| f (x)&U=( f )(x)|q \q(x) dx+

1�q

�L(R)�
=

31�q . (14)

The same holds for x�&R. Hence, the total error e(U= , \, �) will be at
most = if we define U=( f )(x) for x # [&R, R] such that

\|
R

&R
| f (x)&U=( f )(x)|q \q(x) dx+

1�q

�
=

31�q . (15)

We now show that such a U= exists and uses finitely many function�
derivative evaluations. Let MR=sup [\(t): t # [0, R]]. Due to (9), MR is
finite. To satisfy (15), it is enough to guarantee that

\|
R

&R
| f (x)&U=( f )(x)|q dx+

1�q

�
=

31�qMR
.

Let KR=inf[�(t): t # [0, R]]. Due to (10), KR is positive. For f # Fp we
thus have

\|
R

&R
| f (r)(x)| p dx+

1�p

�
1

KR \|
R

&R
| f (r)(x)| p � p(x) dx+

1�p

�
1

KR
.

Hence, we reduce the problem to the classical (unweighted) approximation
over the finite interval [&R, R]. Since this problem has a finite complexity,
there exists U= satisfying (15) and using finitely many function�derivatives
evaluations. This completes the proof. K

We now elaborate on the condition (13) by presenting a more explicit
form of L(R). We can eliminate functions : in (11) for special values of p
and q.
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Case 1. Let p=�. The corresponding supremum in (11) is attained for
:(t)#1. Hence (13) takes the simplified form

lim
R � � \|

�

R
\q(x) \|

x

R

(x&t)r&1

�(t)
dt+

q

dx+
1�q

=0.

For q=�, this simplifies even more to

lim
R � �

sup ess
x�R

\(x) |
x

R

(x&t)r&1

�(t)
dt=0.

The last condition for �#1 is equivalent to

lim
R � �

\(R) Rr=0.

When �#1 but q<� then (13) becomes

lim
R � � \|

�

R
\q(x)(x&R)rq dx+

1�q

=0.

Case 2. Let q=1. Then (13) is equivalent to

lim
R � �

sup
&:&p�1

|
�

R

|:(t)|
�(t) |

�

t
(x&t)r&1 \(x) dx dt=0.

A standard use of Ho� lder's inequality allows us to eliminate :, and (13) is
equivalent to

lim
R � � \|

�

R \ 1
�(t) |

�

t
(x&t)r&1 \(x) dx+

p�( p&1)

dt+
( p&1)�p

=0.

Hence, regardless of the weight �, �R xr&1\(x) dx<� is a necessary
condition for the complexity to be finite.

For q=1 we observed that the weight \ must go sufficiently quickly to
zero (independently of the weight �) to make the complexity finite. We
now show that the corresponding property holds for any q.

Corollary 1. Let h(x)=xr&1\(x). If comp(=, \, �) is finite for every
positive = then

h # Lq(R+) for q<� and lim
x � �

h(x)=0 for q=�.
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Proof. We rewrite (11) as

L(R)= sup
&:&p�1 \|

�

R
hq(x) \|

x

R

(1&t�x)r&1

(r&1)!
|:(t)|
�(t)

dt+
q

dx+
1�q

.

Observe that the inner integral �x
R (1&t�x)r&1 |:(t)|��(t) dt increases with

x for any function :. Therefore, for limR � � L(R)=0 it is necessary that h
belongs to Lq(R) for finite q and that limx � � h(x)=0 for q=�. K

For arbitrary values of p and q, it is difficult to eliminate : from (13). By
using Ho� lder's inequality we may estimate L(R) by

L(R) � L� (R)

:=\|
�

R
\q(x) \|

x

R \
(x&t)r&1

(r&1)! �(t)+
p�( p&1)

dt+
q( p&1)�p

dx+
1�q

(16)

and use the convergence of L� (R) to zero as a sufficient condition for finite
complexity.

We now translate the condition (13) in terms of the behavior of the
weight functions at infinity. This will be done by using the order at infinity
defined in (1).

Theorem 2. (i) Assume that the set [o\ , o1��] is different from the set
[�, &�]. Then

o\+min[1&1�p, o1��]>#=r+1�q&1�p (17)

implies finite complexity for all positive =.

(ii) Assume that the set [o1�\ , o�] is different from the set [�, &�].
Then

&o1�\+min[1&1�p, &o�]<#=r+1�q&1�p (18)

implies infinite complexity for small positive =.

Proof. We assume that both p and q are from (1, �). The limiting cases
can be shown by a slight modification of the proof presented below.

To prove (i), observe that o\+min[1&1�p, o1��] is well-defined since
the case �&� is excluded. We may also assume that both o\ and o1�� are
finite. For any positive $, we have

\(x)=O(x&o\+$) and 1��(x)=O(x&o1��+$).
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Consider the integral

a :=|
x

R \
(x&t)r&1

(r&1)! �(t)+
p�( p&1)

dt

=O \x (r&1) p�( p&1) |
x

R
t(&o1��+$) p�( p&1) dt+ .

We can always choose $ such that (&o1��+$) p�( p&1){&1. Therefore

a=O \x(r&1) p�( p&1) x1+(&o1��+$) p�( p&1)&R1+(&o1��+$) p�( p&1)

1+(&o1��+$) p�( p&1) +
=O(x(r&1+max[0, &o1��+$+1&1�p]) p�( p&1)).

Then the integrand of (16) can be estimated as

b :=\q(x) \|
x

R \
(x&t)r&1

(r&1)! �(t)+
p�( p&1)

dt+
q( p&1)�p

=O(x&q(o\&$&r+1&max[0, &o1��+$+1&1�p])).

Since &max[0, :]=min[0, &:] for any :, we have

b=O(x&q(o\+min[0, o1��&$&1+1�p]&r+1&$)).

This function is integrable since q(o\+min[0, o1��&$&1+1�p]&r+1
&$)>1 for sufficiently small $. Hence, L� (R) goes to zero as R goes to
infinity. This implies that the complexity is finite.

To prove (ii), observe that &o1�\+min[1&1�p, &o�] is well-defined
since the case �&� cannot happen. We may also assume that both o1�\

and o� are finite. For any positive $, we now have

\(x)=0(xo1�\&$) and 1��(x)=0(xo�&$).

We choose :(x)=3(x&(1�p+$)) and conclude

|
x

R

(x&t)r&1

(r&1)!
|:(t)|
�(t)

dy=0 \xr&1 |
x�2

R
to�&1�p&2$ dt+

=0(xr&1+max[0, o�&2$+1&1�p]).

From this we obtain

Lq(R)=0 \|
�

R
xq(o1�\&$+r&1+max[0, o�&2$+1&1�p]) dx+ .
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For sufficiently small $, the exponent q(o1�\&$+r&1+max[0, o�&2$+
1&1�p])>&1. Indeed, the last inequality is equivalent to &o1�\+min[0,
&o�&1+1�p]<r&1+1�q which holds due to the hypotheses of the
theorem. Therefore, L(R)=� for every R�0. This implies that the
complexity is infinite for small =. This completes the proof. K

Theorem 2 simplifies if we assume that o\=&o1�\ and o�=&o1�� and
both are finite numbers. Then we can rewrite Theorem 2 as

o\+min[1&1�p, o1��]># implies comp(=)<�, \=>0, (19)

o\+min[1&1�p, o1��]<# implies comp(=)=�, for small =>0. (20)

In the next section we show that (19) holds with comp(=) of order =&1�s,
which is the complexity of the classical approximation problem.

In view of (19) and (20), it is interesting to ask what happens for

o\+min[1&1�p, o1��]=# (21)

It is easy to check that in this case, the complexity may be finite or infinite
depending on the specific form of the weights \ and �. For example, take
�#1. Then o�=o1��=0. For \(t)=(2+|t| )&# ln&2#(2+|t| ) we have
o\=# and (21) holds. From (16) we conclude that

L� (R)=O \|
�

R
(x ln2 x)&1 dx+=O \|

�

ln R
t&2 dt+=O(ln&1 R).

This implies finite complexity.
On the other hand for the same �, take \(t)=(2+|t| )&# ln2�p(2+|t| ). Then

once more o\=# and (21) holds. For :(t)=3((2+|t| )&1�p ln&2�p(2+|t| ))
we have

L(R)=0 \|
�

R
x&1 dx+=�.

Hence, the complexity is infinite for small =.
We also illustrate Theorem 2 for the weight functions \=� with o\=

&o1�\ . Assume first that o\ is a finite number. Then (ii) of Theorem 2 is
satisfied, since o\+min[1&1�p, &o\]�0<#. Hence, for such weights, the
complexity of weighted approximation is infinite for small =. For o\=�,
complexity can be either finite or infinite, depending on the form of the
weight \. Indeed, take p=q=�. Then Case 1 yields that for \(t)=
exp(&|t| ) we have infinite complexity, and for \(t)=exp(&t2) we have
finite complexity.
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4. EQUIVALENCE OF COMPLEXITIES

In this section we address the question as to when the complexity of
weighted approximation is of the same order as the complexity of classical
approximation, that is, when it is of order =&1�s with s=# for p�q and
s=r for p>q; see (4).

We first present an algorithm for solving the weighted approximation
problem for monotonic weights that computes an =-approximation with
cost proportional to =&1�s. Then we show how this algorithm can be used
for general weights satisfying (i) of Theorem 2.

4.1. An Algorithm for Monotonic Weights

In this subsection we assume that both \ and � are monotonic on R+ .
That is, we assume that \ is nonincreasing since Corollary 1 implies that
we would have infinite complexity otherwise. The weight � can be either
nonincreasing or nondecreasing.

Define }: R+ � R+ by

}(x)=
\(x)
�(x)

if � is nondecreasing, and }(x)=
\(x)

�(2x)
otherwise.

We also assume that } is nonincreasing, that }1�# is integrable, i.e.,

|
�

1
}1�#(x) dx<�, (22)

and that there exist positive constants A2 and A3 such that

L(R)�A2 }(R) R#, \R�2, (23)

and

i2i}1�#(2 i)�A3 �ln 2, \i�1. (24)

Later, we shall need the quantity

A :=}1�#(0)+|
�

1
}1�#(x) dx.

Some of the above assumptions could be relaxed as discussed in the second
half of this section. We decided to start with stronger assumptions since
they are satisfied by a number of important families of weights. They also
allow us to get explicit estimates of the error and cost of the proposed
algorithm, avoiding the 3-notation.
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We are ready to define the algorithm U=U= . Let a0=0, ai=2 i and a&i

=&ai for i�1. For a given positive integer k, let Ii=[ai&1 , a i] and
I&i=&I i for i=1, ..., k. For |i |=k+1 we have Ik+1=[2k, �) and
I&(k+1)=&Ik+1=(&�, &2k]. We denote the lengths of the intervals I\i

by ri . Hence r1=2 and ri=ai&1=2i&1 for i=2, ..., k.
The algorithm U depends on integer parameters k and m1 , ..., mk�1;

their choice will be discussed below. On the interval I\i , i=1, ..., k, the
algorithm U uses mi+r values at equally spaced points and is an inter-
polating piecewise polynomial of degree r&1, see Remark 1. For x # Ik+1

or x # I&k&1=&Ik+1 , the algorithm U is the Taylor polynomial of degree
r&1 with the center at ak or &ak , respectively. Note that the total
cardinality of the information used by U equals

card(U)=2r(k+1)&2k+1+2 :
k

i=1

m i . (25)

Define

c1=}(0) 2# and c i=}(2 i&1) 2#(i&1) for i=2, 3, ... .

Note that ��
1 }1�#(x) dx=��

i=0 �2i+1

2i }1�#(x) dx. Since }1�# is monotone, we
have

1
2 :

�

i=0

}1�#(2i+1) 2i+1�|
�

1
}1�#(x) dx� :

�

i=0

}1�#(2i) 2i.

Note that (22) implies ��
i=1 c1�#

i <�, and that (24) implies

ci+1�
A#

3

i# ln# 2
.

The choice of the parameters k and m1 , ..., mk depends on the relation
between p and q.

Case p�q. Given an error demand =, where 0<=<1, we take k=k(=)
as the minimal integer for which

ck+1�= max[A1 , A2],

where A1 is given in Remark 1. This means that =�max[A1 , A2]<ck and,
due to the properties of ci , such k is well-defined. Moreover,

k(=)�1+
A3(max[A1 , A2])1�#

=1�# ln 2
.
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The numbers mi are chosen as

mi=mi (=)=�\max[A1 , A2]
ci

= +
1�#

| for i=1, ..., k+1.

Observe that mk+1=1.

Case p>q. We now select k and the mi 's as follows. Define

C(=, l)=\max[A1 , A2]
= +

1�r

\2 :
l+1

i=1

c1�#
i +

(1&q�p)�(qr)

for = # (0, 1] and l�1. Observe that C(=, l)�C(=, �)<�. We take
k=k(=) as the minimal integer for which

c1�#
k+1C(=, k)�1.

Note that k(=) is well-defined and

k(=)�1+
A3(max[A1 , A2])1�r

=1�r ln 2 \2 :
�

i=1

c1�#
i +

(1&q�p)�(qr)

.

The numbers mi are chosen as

mi=mi (=)=Wc1�#
i C(=, k)X for i=1, ..., k+1.

As before, mk+1=1.

This concludes the definition of the algorithm U=U= . We now obtain
the estimates of the error and cardinality of information used by the
algorithm U= .

Theorem 3. For every = # (0, 1] we have e(U= , \, �, q, p)�= and

card(U=)�4r+1+(max[A1 , A2])1�s

_\(4A)#�s+
2r

ln 2
A3(4A)(1�q&1�p)+�r+ =&1�s.

Proof. Denote by ei ( f ) the errors of U=U= for a function f restricted
to Ii . That is,

ei ( f )=\|Ii

| f (x)&U( f )(x)| q \q(x) dx+
1�q

.
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Then

\|R

| f (x)&U( f )(x)|q \q(x) dx+
1�q

=\ :
1�|i | �k+1

eq
i ( f )+

1�q

.

For |i | # [1, k], the monotonicity of \ and Remark 1 imply that

e\i ( f )�A1\(a i&1)
r#

i

m s
i

b\i ( f ),

where (for all |i |�k+1)

bi ( f )=\|Ii

| f (r)(x)| p dx+
1�p

=\|Ii

| f (r)(x) �(x)| p �&p(x) dx+
1�p

�
di ( f )

�(a$i&1)
with d i ( f )=\|Ii

| f (r)(x) �(x)| p dx+
1�p

.

Here a$i&1=ai&1 if � is nondecreasing, and a$i&1=ai otherwise. Hence,

e\i ( f )�A1c id\i ( f ) m&s
i .

Of course, for i=k+1, we have as in (14),

e\(k+1)( f )�L(ak) d\(k+1)( f )�A2ck+1d\(k+1)( f )

due to (23). Since mk+1=1, we have

e\i ( f )�max[A1 , A2] cid\i ( f ) m&s
i for i=1, 2, ..., k+1. (26)

Using the fact that (�k+1
i=1 dp

\i ( f ))1�p is bounded by 1, we obtain

e(U)= sup
f # Fp

\ :
1�|i |�k+1

eq
i ( f )+

1�q

�max[A1 , A2] sup {\ :
1�|i |�k+1

dq
i cq

|i | m
&qs
|i | +

1�q

:

di�0, \ :
1�|i | �k+1

dp
i +

1�p

�1= .

Let wi=c |i | m&s
|i | . Then the last supremum is the operator norm of a

diagonal operator with weights wi . For completeness we estimate this
norm.
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Consider the case p�q. Since di�1 then dq
i �dp

i and

\ :
1�|i |�k+1

dq
i wq

i +
1�q

� max
1�i�k+1

wi \ :
1�|i |�k+1

dp
i +

1�q

� max
1�i�k+1

wi .

For p>q, we use the Ho� lder inequality with 1�p$+q�p=1, i.e., p$=
1�(1&q�p), and obtain

:
1�|i |�k+1

dq
i wq

i �\2 :
k+1

i=1

wq�(1&q�p)
i +

1&q�p

\ :
1�|i |�k+1

dp
i +

q�p

�\2 :
k+1

i=1

wq�(1&q�p)
i +

1&q�p

.

This shows that

e(U)�max[A1 , A2]_{
max1�i�k+1 c im&s

i

\2 :
k+1

i=1

(c im&s
i )q�(1&q�p)+

1�q&1�p

if p�q,

if p>q.

Consider now the case p�q. Then s=#=r+1�q&1�p. From the defini-
tion of mi we have

ci m&#
i �=1 :==�max[A1 , A2].

This yields e(U)�=, as claimed.
We use (25) to estimate the cardinality card(U). Note that �k

i=1 mi�
k+=&1�#

1 �k
i=1 c1�#

i . We now show that

:
k

i=1

c1�#
i �2A.

Indeed, the monotonicity of }1�# implies that

:
k

i=1

c1�#
i =2}1�#(0)+ :

k

i=2

2 i&1}1�#(2 i&1)

�2}1�#(0)+2 :
k

i=2
|

2i&1

2i&2
}1�#(t) dt

�2}1�#(0)+2 |
�

1
}1�#(t) dt=2A,
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as claimed. From this we conclude that �k
i=1 mi�k+2A=&1�#

1 , and

card(U)�2r(k+1)+1+4A=&1�#
1 .

Since k(=)�1+A3=&1�#�ln 2, this completes the proof for p�q.
We now consider the case p>q. Then s=r and mi�c1�#

i C(=, k), which
implies that cim&s

i �c1&r�#
i C&r(=, k). Note also that 1&r�#=(1&q�p)�

(q#). Therefore

e(U)
max[A1 , a2]

�\2 :
k+1

i=1

(cim&s
i )q�(1&q�p)+

(1&q�p)�q

�\2 :
k+1

i=1

(c1&r�#
i C&r(=, k))q�(1&q�p)+

(1&q�p)�q

=C&r(=, k) \2 :
k+1

i=1

c1�#
i +

1�q&1�p

==1 .

Hence e(U)�=, as claimed. The estimate of card(U) is similar to that for
the case p�q, and we omit this part. K

Theorem 3 states that the cost of the algorithm U= is of the same order
as the complexity of the classical approximation problem. This means that
the algorithm U= is optimal (up to a multiplicative factor) and the com-
plexity of weighted approximation is of the same order as the complexity
of classical approximation.

This holds for monotonic weights satisfying (22)�(24). In the rest of this
subsection we discuss whether the conditions (22)�(24) are necessary. We
begin with the following two remarks.

Remark 3. The monotonicity assumption can be relaxed in a number
of ways. One can relax it by assuming the existence of weights \̂ and ��
satisfying the assumptions (22)�(24) and such that \(x)�\̂(x) and
�(x)��� (x) for all x. Then the algorithm derived for such new weights will
still yield approximations with the error bounded by = and cost propor-
tional to =&1�s. One could also handle even more general weights by computing
the maxima of \ and the minima of � for each subinterval [ai&1 , ai] and
defining mi as the ratio of } at these maximum and minimum points. This,
however, can be prohibitively expensive.

Finally, an easy relaxation is to assume monotonicity of the weights only
for sufficiently large arguments. Similarly, the complexity of the weighted
problem remains proportional to =&1�s if (23) holds for sufficiently large R
(not necessarily for R�2).
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Remark 4. Recall that we use the argument 2x in the definition of }
when � is nonincreasing. Moreover, the inequality (24) is expressed in
terms of powers of two. We have chosen the constant 2 only for the sake
of simplicity. Indeed, it can be replaced by any number z>1. That is, we
could define }(x)=\(x)��(zx) (when � is nonincreasing) and restate (24)
as

}1�#(zi) zi ln zi�A3 , \i�1.

Of course, then we should use ai=zi instead of 2i in the definition of
the algorithm U= . The importance of this remark may be illustrated by
choosing weight functions \(x)=e&ax and �(x)=e&bx, where (necessarily)
a>0. We can conclude then that the complexity of the weighted problem
is proportional to =&1�s if a>b, since the modified assumption (22)�(24)
hold with any z # (1, a�max[0, b]). As we have already mentioned, we have
infinite complexity when a�b, see also the following proposition.

We now discuss the necessity of assumption (22).

Proposition 1. Suppose that \ is monotonically nonincreasing and � is
monotonic. Then the condition (22) is necessary for comp(=, \, �)=3(=&1�s).

Proof. Let comp(=)=3(=&1�s). There exists an algorithm U=U= that
uses n=n(=)=comp(=)�c1=&1�s sample points and has error at most =. In
what follows, let ci denote various positive numbers that are independent
of =. Let xi=x i (=) be the positive sample points used by U, where
0=x0<x1< } } } <xk with k=k(=)�n.

Let hi (t)=hi (t; =)=(t&xi&1) r
+ (xi&t)r

+ and h� i (t)=h i (t)�&h (r)
i �&p .

Obviously, \h� i # Fp . The information about \h� i is zero, and therefore the
error of U cannot be smaller than the weighted Lq(R) norm of h� i ; see also
(2) with R=� and with the weighted norms. Hence,

=�\|R

h� q
i (t) \(t) dt+

1�q

=\ |
xi

xi&1

hq
i (t) \q(t) dt

\|
xi

xi&1

|h (r)
i (t) �(t)| p dt+

q�p+
1�q

. (27)

It is easy to verify that

\ |
xi

xi&1

hq
i (t) dt

\|
xi

xi&1

|h (r)
i (t)| p dt+

q�p+
1�q

=c2(xi&xi&1)#.
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Define

}~ i=}~ i (=)=
minxi&1�t�xi

\(t)

maxxi&1�t�xi
�(t)

,

which equals \(xi)��(xi) if � is nondecreasing and \(x i)��(xi&1) otherwise.
From the monotonicity of the weights, we get that

=�}~ i \ |
xi

xi&1

hq
i (t) dt

\|
xi

xi&1

|h (r)
i (t)| p dt+

q�p+
1�q

=c2}~ i (xi&xi&1)#, (28)

or equivalently that

}~ 1�#
i (x i&x i&1)�c3=1�#.

This, together with (9) and (10), implies that for any positive number M,
we have

lim
= � 0

max[x i (=)&x i&1(=) : xi&1(=)�M]=0.

Define

I(=) := :
k(=)

i=1

}~ 1�#
i (xi&xi&1),

and

k(=, M) :=min[i: xi (=)�M] and I(=, M) := :
k(=, M)

i=1

}~ 1�#
i (x i&xi&1).

Note that k(=, M) exists and converges to infinity with = going to zero.
We need to prove that I(=) is uniformly bounded, i.e., that there exists

a positive constant c4 such that

I(=)�c4 , \=>0. (29)

To this end, consider first the case p�q. Since there are k(=)�c1=&1�s

such points and s=#, we have

I(=)= :
k(=)

i=1

}~ 1�#
i (xi (=)&xi&1(=))�c3=1�#n(=)�c4 , \=>0.
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Consider now the case p>q. Then s=r<# and k=k(=)�c1=&1�r. We
first show that

a=a(=) :=\ :
k

i=1

(}~ i (xi&xi&1)#)q�(1&q�p)+
(1&q�p)�q

�c5=. (30)

Indeed, consider the function

f (x)=\(x) :
k

i=1

dih� i (x)

for di chosen such that (�k
i=1 |di�(a$i)| p)1�p�1 with a$i=xi for nondecreas-

ing � and a$i=xi&1 otherwise. Clearly, f # Fp and has zero values at the
sample points xi . Therefore its weighted Lq(R) norm must be at most =.
Since the weights are monotonic, we have

=�\ :
k

i=1

|di |
q |

xi

xi&1

h� q
i (t) \q(t) dt+

1�q

�c6 \ :
k

i=1

|di�(a$i)| q (}~ i (xi&xi&1)#)q+
1�q

.

We maximize the right hand side with respect to ci by taking ci propor-
tional to (}(xi)(xi&xi&1)#)1�(1&q�p)��(a$i) and obtain (30). We now apply
Ho� lder's inequality to I(=) to get

I(=)�a1�#k(=)1�u with
1
u

=1&
1&q�p

#q
=

r
#

.

Hence, as claimed in (29), I(=)�c7=1�#=&1�#�c4 .
Since I(=, M)�I(=), we conclude from (29) that I(=, M) is uniformly

bounded:

I(=, M)�c4 , \=>0, \M>0.

Since for nondecreasing � we have

lim
= � 0

I(=, M)=|
M

0 \\(x)
�(x)+

1�#

dx,

this implies that (22) holds. The equality above also holds for decreasing �.
Indeed, for monotonic weights, we can assume their continuity. Then these
weights are uniformly continuous over [0, M] and |}~ 1�#

i (=)&(\(xi (=))�
�(xi (=)))1�#| converges to zero uniformly in i. Since �k(=, M)

i=1 (xi (=)&xi&1(=))
converges to M, this completes the proof. K
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Remark 5. From the proof of Proposition 1 it is clear that the mono-
tonicity assumption on \ and � can be relaxed by assuming only continuity
of the weight functions.

We end this subsection by the following proposition that addresses the
assumption (23).

Proposition 2. Suppose that L(1) is finite and there exist positive
constants c1 and c2 such that

\(xR)�c1\(x) \(R) and �(x) �(R)�c2�(xR) (31)

for every x�1 and every sufficiently large R. Then (23) holds with A2=
c1L(1)�c2<�.

Proof. The inequality (23) follows directly from (12). K

Note that (31) holds for \(x)=(1+x)&a (a>0) with c1=2a and
�(x)=(1+x)&b with c2=2min[0, b].

4.2. Equivalence and Orders

In this subsection we relate the equivalence of the complexity to the
orders of the weight functions at infinity. We begin with the following
theorem.

Theorem 4. Assume that the set [o\ , o1��] is different from the set
[�, &�]. Then the condition (17) of Theorem 2,

o\+min[1&1�p, o1��]>#

implies that

comp(=, \, �)=3(=&1�s) as = � 0.

Proof. The proof is based on replacing \(x) by its upper bound \~ (x)=
c1(1+x)&o\+$ and �(x) by its lower bound �� (x)=c2(1+x)o1��&$, where $
is a positive number chosen to guarantee that o\&$+min[1&1�p, o1��&$]
>#. The weights \~ and �� satisfy the assumptions (22)�(24) for sufficiently
large x which is enough due to Remark 3. K

We now discuss the necessity of the assumption, : :=o\+min[1&1�p,
o1��]>#, in Theorem 4. For simplicity of presentation we now assume that
o\=&o1�p and o�=&o1�� , and both are finite. From Theorem 2, we know
that the complexity is infinite if :<#. It is therefore natural to ask what
happens when :=#. As stated in the following proposition anything can
happen even for a relatively simple special case.
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Proposition 3. Let r=1, p=q=�, �(x)=1, and \(x)=(x+e)&1

ln&a(x+e). Then o\+min[1&1�p, o1, �]=#=1 and

comp(=, \, �)={
3(=&1)
3(=&1 ln =&1)
3(=&1�a)
�

if a>1,
if a=1,
if 0<a<1,
if a�0.

Proof. For a>1, this follows from the fact that (22)�(24) hold. For
a�0, this follows from Theorem 1 since Case 1 of Section 3 implies that

L(R)= sup
x�R

x&R
(x+e) lna(x+e)

tln |a| R

does not converge to zero.
We now prove the proposition for a # (0, 1]. Given = # (0, 1), let x1 , ..., xn

be the non-negative points of information used by an optimal algorithm
whose error does not exceed =. Without loss of generality we can assume
that x1=0 and that for negative arguments, the algorithm uses &x2 , ...,
&xn . Of course, the number n and the points x i depend on =.

Since 1�\ is convex, it is easy to check, see also Appendix G in [7], that
the optimal location of the information points is such that

xi+1&xi

2
\ \xi+1+x i

2 +== (32)

and that n=n(=) is the first index for which L(xn)�=. From the form of
\, we have that

xn(=)=exp(=&1�a(1+o(1))).

Let m=m(=) be the largest index for which

xm+e�exp((1�(6=))1�a).

Since xn(=)+e�0.5 exp((2=)&1�a) for small =>0, we have that

m�n(=) and xm(=)�exp((1�(7=))1�a) for sufficiently small =.

For i�m&1, we conclude from (32) that

=�
xi+1&xi

2
\(xi+1)�

x i+1&xi

2(e+xi+1)
6=.
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Hence, xi+1&xi�(e+x i+1)�3 and x i+1�1.5xi+e�2. This yields

xi+1&xi

e+xi
�

1
2

. (33)

For small = we have

(n(=)&1) =�(m(=)&1) == :
m(=)&1

i=1

x i+1&xi

2
\ \x i+1+xi

2 +
= :

m(=)&1

i=1

xi+1&xi

2
\(xi)

+ :
m(=)&1

i=1

x i+1&xi

2 \\ \xi+1+x i

2 +&\(xi)+ .

Note that \$(x)=&\(x)�(x+e)(1+a�ln(x+e))�&2\(x)�(x+e). This
and (33) yield

\ \x i+1+x i

2 +&\(xi)�&
2\(x i)
e+xi

x i+1&xi

2
�&

\(xi)
2

.

Hence,

(n(=)&1) =�
1
2

:
m(=)&1

i=1

x i+1&xi

2
\(x i)�

1
4 |

xm(=)

x1

\(t) dt.

As already mentioned, xm�exp((1�(7=))1�a) with = approaching zero.
Therefore

n(=)�1+
1
4= |

exp((1�(7=)) 1�a)

0
\(t) dt.

Since the integral is proportional to =&(1&a)�a for a<1 and ln =&1 for a=1,
this completes the proof of the lower bound on the complexity.

To show an upper bound on (n(=)&1) = observe that

(n(=)&1) == :
n(=)

i=2

x i+1&xi

2
\ \xi+1+xi

2 +
� :

n(=)

i=2
|

(xi+1+xi)�2

xi

\(t) dt�|
xn(=)

0
\(t) dt.

Since the last integral is of the same order as the integral for the lower
bound, the proof is complete. K
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Proposition 3 presents an example of the weighted approximation
problem with complexity that is polynomial in =&1 for a>0. Using the
same proof technique it is easy to show that the complexity of weighted
approximation can also be an exponential function of =&1. This is presented
in the following proposition.

Proposition 4. Let r=1, p=q=�, �(x)=1, and \(x)=(x+e)&1

ln&1 ln(x+ee). Then o\+min[1&1�p, o1��]=#=1 and

comp(=, \, �)=3(exp(=&1(1+o(1)))).

We think that in the general case with :=# the complexity depends on
the integral of }1�# over the interval of length proportional to L&1(=). This
is the case when the weights satisfy the assumptions (22)�(24), as well as
for problems in Propositions 3 and 4. We propose therefore the following
conjecture.

Conjecture 1. If

o\+min[1&1�p, o1��]=#

then

comp(=, \, �)=3 \=&1�s \|
c1 L&1(c2=)

0
}1�#(t) dt+

#�s

+
for some positive constants c1 and c2 .
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